Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.653
Filtrar
1.
J Occup Environ Hyg ; 21(4): 247-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451548

RESUMO

Exposure to respirable dust and crystalline silica (SiO2) has been linked to chronic obstructive pulmonary disease, silicosis, cancer, heart disease, and other respiratory diseases. Relatively few studies have measured respirable dust and SiO2 concentrations among workers at brick kilns in low- and middle-income countries. The purpose of this study was to measure personal breathing zone (PBZ) respirable dust and SiO2 concentrations among workers at one brick kiln in Bhaktapur, Nepal. A cross-sectional study was conducted among 49 workers in five job categories: administration, fire master, green (unfired) brick hand molder, green brick machine molder, and top loader. PBZ air samples were collected from each worker following Methods 0600 (respirable dust) and 7500 (respirable crystalline SiO2: cristobalite, quartz, tridymite) of the U.S. National Institute for Occupational Safety and Health. Eight-hour time-weighted average (TWA) respirable dust and quartz concentrations were also calculated. SiO2 percentage was measured in one bulk sample each of wet clay, the release agent used by green brick hand molders, and top coat soil at the brick kiln. The geometric mean (GM) sample and TWA respirable dust concentrations were 0.20 (95% confidence interval [CI]: 0.16, 0.27) and 0.12 (95% CI: 0.09, 0.16) mg/m3, respectively. GM sample and TWA quartz concentrations were 15.28 (95% CI: 11.11, 21.02) and 8.60 (95% CI: 5.99, 12.34) µg/m3, respectively. Job category was significantly associated with GM sample and TWA respirable dust and quartz concentrations (all p < 0.0001). Top loaders had the highest GM sample and TWA respirable dust concentrations of 1.49 and 0.99 mg/m3, respectively. Top loaders also had the highest GM sample and TWA quartz concentrations of 173.08 and 114.39 µg/m3, respectively. Quartz percentages in bulk samples were 16%-27%. Interventions including using wet methods to reduce dust generation, administrative controls, personal protective equipment, and education and training should be implemented to reduce brick kiln worker exposures to respirable dust and SiO2.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Dióxido de Silício/análise , Exposição Ocupacional/análise , Quartzo/análise , Poeira/análise , Poluentes Ocupacionais do Ar/análise , Nepal , Estudos Transversais , Exposição por Inalação/análise
2.
Environ Sci Technol ; 58(14): 6105-6116, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547313

RESUMO

Inhalation of PCB-contaminated air is increasingly recognized as a route for PCB exposure. Because limited information about the disposition of PCBs following inhalation exposure is available, this study investigated the disposition of 2,2',5,5'-tetrachlorobiphenyl (PCB52) and its metabolites in rats following acute, nose-only inhalation of PCB52. Male and female Sprague-Dawley rats (50-58 days of age, 210 ± 27 g; n = 6) were exposed for 4 h by inhalation to approximately 14 or 23 µg/kg body weight of PCB52 using a nose-only exposure system. Sham animals (n = 6) were exposed to filtered lab air. Based on gas chromatography-tandem mass spectrometry (GC-MS/MS), PCB52 was present in adipose, brain, intestinal content, lung, liver, and serum. 2,2',5,5'-Tetrachlorobiphenyl-4-ol (4-OH-PCB52) and one unknown monohydroxylated metabolite were detected in these compartments except for the brain. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis identified several metabolites, including sulfated, methoxylated, and dechlorinated PCB52 metabolites. These metabolites were primarily found in the liver (7 metabolites), lung (9 metabolites), and serum (9 metabolites) due to the short exposure time. These results demonstrate for the first time that complex mixtures of sulfated, methoxylated, and dechlorinated PCB52 metabolites are formed in adolescent rats following PCB52 inhalation, laying the groundwork for future animal studies of the adverse effects of inhaled PCB52.


Assuntos
Exposição por Inalação , Bifenilos Policlorados , Ratos , Masculino , Feminino , Animais , Exposição por Inalação/análise , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo
3.
Inhal Toxicol ; 36(3): 189-204, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466202

RESUMO

OBJECTIVE: Inhalation of diesel exhaust (DE) has been shown to be an occupational hazard in the transportation, mining, and gas and oil industries. DE also contributes to air pollution, and therefore, is a health hazard to the general public. Because of its effects on human health, changes have been made to diesel engines to reduce both the amounts of particulate matter and volatile fumes they generate. The goal of the current study was to examine the effects of inhalation of diesel exhaust. MATERIALS AND METHODS: The study presented here specifically examines the effects of exposure to 0.2 and 1.0 mg/m3 DE or filtered air (6h/d for 4 d) on measures of peripheral and cardio-vascular function, and biomarkers of heart and kidney dysfunction in male rats. A Tier 2 engine used in oil and gas fracking operations was used to generate the diesel exhaust. RESULTS: Exposure to 0.2 mg/m3 DE resulted in an increase in blood pressure 1d following the last exposure, and increases in dobutamine-induced cardiac output and stroke volume 1 and 27d after exposure. Changes in peripheral vascular responses to norepinephrine and acetylcholine were minimal as were changes in transcript expression in the heart and kidney. Exposure to 1.0 mg/m3 DE did not result in major changes in blood pressure, measures of cardiac function, peripheral vascular function or transcript expression. DISCUSSION AND CONCLUSIONS: Based on the results of this study, we suggest that exposure to DE generated by a Tier 2 compliant diesel engine generates acute effects on biomarkers indicative of cardiovascular dysfunction. Recovery occurs quickly with most measures of vascular/cardiovascular function returning to baseline levels by 7d following exposure.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Masculino , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Material Particulado/toxicidade , Biomarcadores , Exposição por Inalação/efeitos adversos
4.
J Environ Manage ; 355: 120438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38422853

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are of significant public concern because of their toxicity and long-range transport potential. Extensive studies have been conducted to explore the source-receptor relationships of PAHs via atmospheric transport. However, the transfer of trade-driven regional and global PAHs is poorly understood. This study estimated the virtual PAHs emission transfer embodied in global trade from 2004 to 2014 and simulated the impact of international trade on global contamination and associated human inhalation exposure risk of PAHs. Results show that trade-driven PAHs flowed primarily from developed to less-developed regions, particularly in those regions with intensive heavy industries and transportation. As the result, international trade resulted in an increasing risk of lung cancer induced by exposure to PAHs (27.8% in China, 14.7% in India, and 11.3% in Southeast Asia). In contrast, we found decreasing risks of PAHs-induced lung cancer in Western Europe (63.2%) and the United States (45.9%) in 2004. Our findings indicate that final demand and emission intensity are the key driving factors contributing to rising and falling consumption-based PAHs emissions and related health risk respectively. The results could provide a useful reference for global collaboration in the reduction of PAHs pollution and related health risks.


Assuntos
Poluentes Atmosféricos , Neoplasias Pulmonares , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poluentes Atmosféricos/análise , Exposição por Inalação/análise , Comércio , Internacionalidade , China , Monitoramento Ambiental/métodos , Medição de Risco
5.
Inhal Toxicol ; 36(2): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422051

RESUMO

Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.


Assuntos
Pneumopatias , Nanopartículas Metálicas , Humanos , Exposição por Inalação/efeitos adversos , Prata , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Ceramidas , Mediadores da Inflamação/metabolismo
6.
Reprod Toxicol ; 125: 108560, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387710

RESUMO

The inhalation exposure to crude oil vapor (COV) has been shown to have adverse effects on the placenta and fetal development. The modulatory effects of quercetin (QUE) as a natural phenolic compound with antioxidant properties are promising for the protection of placental structure. This study aimed to investigate the modulatory role of QUE in mitigating histopathological damage, oxidative stress, and biochemical alteration in the placenta of COV-exposed pregnant rats. Forty-eight pregnant rats were divided into eight groups (days 15 and 20) as follows: 1-2) Control groups, 3-4) COV groups, 5-6) COV+QUE groups, and 7-8) QUE-treated groups (50 mg/kg). The inhalation method was used to expose pregnant rats to COV, and QUE was administered orally. On the 15th and 20th days of gestation, placental tissue was analyzed using PAS and H&E staining and immunohistochemistry. The expression of the caspase-3 gene and oxidative stress biomarkers including TAC, CAT, MDA, GPx, and SOD were investigated in the placental tissue. The COV significantly decreased the weight, diameter, and thickness of the placenta as well as the thickness of the junctional zone and labyrinth and the number of trophoblast giant cells in 15- and 20-day-old placentas (P<0.05). Also, COV significantly increased placental expression of caspase-3 and the oxidative stress biomarkers (P<0.05). The administration of QUE along with exposure to COV reduced morphometric and histological alteration, oxidative stress, and caspase-3 expression (P<0.05). Our findings indicated that QUE in COV-exposed pregnant rats can prevent placental histopathological alternations by increasing the activity of the antioxidant system.


Assuntos
Placenta , Quercetina , Ratos , Gravidez , Feminino , Animais , Placenta/metabolismo , Quercetina/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caspase 3/metabolismo , Exposição por Inalação , Estresse Oxidativo , Biomarcadores/metabolismo
7.
JAMA ; 331(10): 878-879, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38372993

RESUMO

This JAMA Insights in the Climate Change and Health Series defines thunderstorm asthma, describes its effects and increased rate of occurrence, and highlights recommendations for improved response during future events.


Assuntos
Asma , Mudança Climática , Processos Climáticos , Exposição por Inalação , Humanos , Alérgenos/efeitos adversos , Asma/epidemiologia , Asma/etiologia , Tempo (Meteorologia) , Exposição por Inalação/efeitos adversos
8.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407183

RESUMO

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Assuntos
Cádmio , Metais Pesados , Humanos , Feminino , Cádmio/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Monitoramento Ambiental , Método de Monte Carlo , Estudos Transversais , Chumbo/análise , Unhas/química , Metais Pesados/toxicidade , Metais Pesados/análise , Cromo/toxicidade , Níquel/toxicidade , Manganês , Medição de Risco , China
9.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38420937

RESUMO

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Assuntos
Neoplasias Pulmonares , Pulmão , Camundongos , Animais , Pulmão/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos , Transformação Celular Neoplásica , Carcinogênese/induzido quimicamente , Carcinogênese/patologia , Exposição por Inalação , Camundongos Endogâmicos C57BL
10.
Front Public Health ; 12: 1329096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38406502

RESUMO

Sprays are used both in workplace and consumer settings. Although spraying has advantages, such as uniform distribution of substances on surfaces in a highly efficient manner, it is often associated with a high inhalation burden. For an adequate risk assessment, this exposure has to be reliably quantified. Exposure models of varying complexity are available, which are applicable to spray applications. However, a need for improvement has been identified. In this contribution, a simple 2-box approach is suggested for the assessment of the time-weighted averaged exposure concentration (TWA) using a minimum of input data. At the moment, the model is restricted to binary spray liquids composed of a non-volatile fraction and volatile solvents. The model output can be refined by introducing correction factors based on the classification and categorization of two key parameters, the droplet size class and the vapor pressure class of the solvent, or by using a data set of experimentally determined airborne release fractions related to the used spray equipment. A comparison of model results with measured data collected at real workplaces showed that this simple model based on readily available input parameters is very useful for screening purposes. The generic 2-box spray model without refinement overestimates the measurements of the considered scenarios in approximately 50% of the cases by more than a factor of 100. The generic 2-box model performs better for room spraying than for surface spraying, as the airborne fraction in the latter case is clearly overestimated. This conservatism of the prediction was significantly reduced when correction factors or experimentally determined airborne release fractions were used in addition to the generic input parameters. The resulting predictions still overestimate the exposure (ratio tool estimate to measured TWA > 10) or they are accurate (ratio 0.5-10). If the available information on boundary conditions (application type, equipment) does not justify the usage of airborne release fraction, room spraying should be used resulting in the highest exposure estimate. The model scope may be extended to (semi)volatile substances. However, acceptance may be compromised by the limited availability of measured data for this group of substances and thus may have limited potency to evaluate the model prediction.


Assuntos
Exposição por Inalação , Local de Trabalho , Medição de Risco
11.
Part Fibre Toxicol ; 21(1): 7, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368385

RESUMO

BACKGROUND: Airborne environmental and engineered nanoparticles (NPs) are inhaled and deposited in the respiratory system. The inhaled dose of such NPs and their deposition location in the lung determines their impact on health. When calculating NP deposition using particle inhalation models, a common approach is to use the bulk material density, ρb, rather than the effective density, ρeff. This neglects though the porous agglomerate structure of NPs and may result in a significant error of their lung-deposited dose and location. RESULTS: Here, the deposition of various environmental NPs (aircraft and diesel black carbon, wood smoke) and engineered NPs (silica, zirconia) in the respiratory system of humans and mice is calculated using the Multiple-Path Particle Dosimetry model accounting for their realistic structure and effective density. This is done by measuring the NP ρeff which was found to be up to one order of magnitude smaller than ρb. Accounting for the realistic ρeff of NPs reduces their deposited mass in the pulmonary region of the respiratory system up to a factor of two in both human and mouse models. Neglecting the ρeff of NPs does not alter significantly the distribution of the deposited mass fractions in the human or mouse respiratory tract that are obtained by normalizing the mass deposited at the head, tracheobronchial and pulmonary regions by the total deposited mass. Finally, the total deposited mass fraction derived this way is in excellent agreement with those measured in human studies for diesel black carbon. CONCLUSIONS: The doses of inhaled NPs are overestimated by inhalation particle deposition models when the ρb is used instead of the real-world effective density which can vary significantly due to the porous agglomerate structure of NPs. So the use of realistic ρeff, which can be measured as described here, is essential to determine the lung deposition and dosimetry of inhaled NPs and their impact on public health.


Assuntos
Exposição por Inalação , Nanopartículas , Humanos , Camundongos , Animais , Tamanho da Partícula , Exposição por Inalação/análise , Pulmão , Fuligem , Nanopartículas/química , Carbono
12.
Environ Int ; 184: 108481, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38330748

RESUMO

Combustion-derived particulate matter (PM) is a major source of air pollution. Efforts to reduce diesel engine emission include the application of biodiesel. However, while urban PM exposure has been linked to adverse brain effects, little is known about the direct effects of PM from regular fossil diesel (PMDEP) and biodiesel (PMBIO) on neuronal function. Furthermore, it is unknown to what extent the PM-induced effects in the lung (e.g., inflammation) affect the brain. This in vitro study investigates direct and indirect toxicity of PMDEP and PMBIO on the lung and brain and compared it with effects of clean carbon particles (CP). PM were generated using a common rail diesel engine. CP was sampled from a spark generator. First, effects of 48 h exposure to PM and CP (1.2-3.9 µg/cm2) were assessed in an in vitro lung model (air-liquid interface co-culture of Calu-3 and THP1 cells) by measuring cell viability, cytotoxicity, barrier function, inflammation, and oxidative and cell stress. None of the exposures caused clear adverse effects and only minor changes in gene expression were observed. Next, the basal medium was collected for subsequent simulated inhalation exposure of rat primary cortical cells. Neuronal activity, recorded using microelectrode arrays (MEA), was increased after acute (0.5 h) simulated inhalation exposure. In contrast, direct exposure to PMDEP and PMBIO (1-100 µg/mL; 1.2-119 µg/cm2) reduced neuronal activity after 24 h with lowest observed effect levels of respectively 10 µg/mL and 30 µg/mL, indicating higher neurotoxic potency of PMDEP, whereas neuronal activity remained unaffected following CP exposure. These findings indicate that combustion-derived PM potently inhibit neuronal function following direct exposure, while the lung serves as a protective barrier. Furthermore, PMDEP exhibit a higher direct neurotoxic potency than PMBIO, and the data suggest that the neurotoxic effects is caused by adsorbed chemicals rather than the pure carbon core.


Assuntos
Poluentes Atmosféricos , Ratos , Animais , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Emissões de Veículos/toxicidade , Emissões de Veículos/análise , Biocombustíveis , Exposição por Inalação/efeitos adversos , Material Particulado/toxicidade , Material Particulado/análise , Carbono , Inflamação
13.
J Toxicol Environ Health A ; 87(8): 325-341, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38314584

RESUMO

During fused filament fabrication (FFF) 3D printing with polycarbonate (PC) filament, a release of ultrafine particles (UFPs) and volatile organic compounds (VOCs) occurs. This study aimed to determine PC filament printing emission-induced toxicity in rats via whole-body inhalation exposure. Male Sprague Dawley rats were exposed to a single concentration (0.529 mg/m3, 40 nm mean diameter) of the 3D PC filament emissions in a time-course via whole body inhalation for 1, 4, 8, 15, and 30 days (4 hr/day, 4 days/week), and sacrificed 24 hr after the last exposure. Following exposures, rats were assessed for pulmonary and systemic responses. To determine pulmonary injury, total protein and lactate dehydrogenase (LDH) activity, surfactant proteins A and D, total as well as lavage fluid differential cells in bronchoalveolar lavage fluid (BALF) were examined, as well as histopathological analysis of lung and nasal passages was performed. To determine systemic injury, hematological differentials, and blood biomarkers of muscle, metabolic, renal, and hepatic functions were also measured. Results showed that inhalation exposure induced no marked pulmonary or systemic toxicity in rats. In conclusion, inhalation exposure of rats to a low concentration of PC filament emissions produced no significant pulmonary or systemic toxicity.


Assuntos
Exposição por Inalação , Pulmão , Cimento de Policarboxilato , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Pulmão/metabolismo , Líquido da Lavagem Broncoalveolar
14.
Environ Pollut ; 347: 123633, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423272

RESUMO

Nanoplastics are widely distributed in indoor and outdoor air and can be easily inhaled into human lungs. However, limited studies have investigated the impact of nanoplastics on inhalation toxicities, especially on the initiation and progression of chronic obstructive pulmonary disease (COPD). To fill the gap, the present study used oronasal aspiration to develop mice models. Mice were exposed to polystyrene nanoplastics (PS-NPs) at three concentrations, as well as the corresponding controls, for acute, subacute, and subchronic exposure. As a result, PS-NPs could accumulate in exposed mice lungs and influence lung organ coefficient. Besides, PS-NPs induced local and systemic oxidative stress, inflammation, and protease-antiprotease imbalance, resulting in decreased respiratory function and COPD-like lesions. Meanwhile, PS-NPs could trigger the subcellular mechanism to promote COPD development by causing mitochondrial dysfunctions and endoplasmic reticulum (ER) stress. Mechanistically, ferroptosis played an important role in the COPD-like lung injury induced by PS-NPs. In summary, the present study comprehensively and systematically indicates that PS-NPs can damage human respiratory health and increase the risk for COPD.


Assuntos
Lesão Pulmonar , Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Exposição por Inalação/efeitos adversos , Microplásticos , Poliestirenos/toxicidade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
15.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38169488

RESUMO

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Assuntos
Poluição do Ar em Ambientes Fechados , Biomassa , Culinária , Exposição por Inalação , Petróleo , Pneumonia , Feminino , Humanos , Lactente , Gravidez , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária/métodos , Material Particulado/efeitos adversos , Material Particulado/análise , Petróleo/efeitos adversos , Pneumonia/etiologia , Adolescente , Adulto Jovem , Adulto , Internacionalidade , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Exposição Materna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/etiologia
16.
Ann Work Expo Health ; 68(3): 269-279, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38206108

RESUMO

OBJECTIVES: Since the 1920s, Zambia's mining sector has experienced growth, which has increased the number of mine workers employed in the industry. Consequently, the potential for occupational exposure and prevalence of occupational diseases have also increased. Unfortunately, Zambia does not currently have legislative guidelines for workplace air monitoring and compliance. This study's objectives were to evaluate copper miners' personal exposure to respirable dust and respirable crystalline silica (RCS) and to assess workplace compliance using the European Standard for workplace air monitoring and measurement (EN689:2018). METHODS: This cross-sectional study collected 100 personal respirable dust exposure samples at a Zambian copper mine in 2023. These samples were weighed using NIOSH method 0600 and analyzed for crystalline silica using Fourier transform infrared spectroscopy (KBr pellet) (NIOSH method 7602). Additionally, 253 respirable dust exposure measurements collected at the mine between 2017 and 2022 were included for comparison. RESULTS: The median respirable dust exposure for the 2023 exposure measurements was 0.200 mg/m3 (95th percentile 2.871 mg/m3) compared to 0.400 mg/m3 (95th percentile 3.050 mg/m3) for the historic data. The median RCS exposure was 0.012 mg/m3 (95th percentile 0.163 mg/m3). Using EN689:2018, it was found that from 15 work areas, only six work areas complied with the standard for respirable dust exposure and only seven work areas complied with the standard for RCS exposure. CONCLUSIONS: At the mining site, several work areas had substantial exposure to respirable dust and RCS. Therefore, management needs to prioritize these areas when implementing control measures to reduce dust exposure. For the Zambia mining industry to manage exposure to respirable dust and RCS, it is necessary to implement standardized monitoring strategies. This study has demonstrated that EN689:2018 can be used successfully to determine compliance among Zambian mining work areas.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Exposição Ocupacional/análise , Cobre , Zâmbia , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Estudos Transversais , Dióxido de Silício/análise , Exposição por Inalação/análise , Monitoramento Ambiental/métodos
17.
Environ Int ; 183: 108420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199131

RESUMO

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Assuntos
Exposição por Inalação , Nanoestruturas , Humanos , Exposição por Inalação/análise , Pulmão , Células Epiteliais , Medição de Risco
18.
Environ Sci Pollut Res Int ; 31(6): 8963-8973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182960

RESUMO

Much dust is generated in underground coal mining processes, posing threats to workers' health and safety production. Dust enters the human body mainly through inhalation, primarily determined by the dust concentration around workers. In this study, the airflow field and dust distribution in the tunnel are simulated with FLUENT software. The breathing zone for a worker was defined to clarify the extent of external dust distribution influencing dust inhalation. The effects of human respiration, dust production rates, air supply velocities, and workers' positions on dust concentration in the breathing zone were investigated. The results show that there is upward airflow around the worker standing in the center of the air circulation. Human breath barely influences the airflow distribution and respirable dust concentrations in the breathing zone. Reducing the dust production rate in the tunnel can decrease the respirable dust concentration in the breathing zone by almost the same proportion. While increasing the air supply velocity by 50% would reduce only 20% of dust in the breathing zone. The dust concentrations vary along the roadway, in which the low concentration zone is located in the middle, more than 1.0 m away from the dust-producing surface and the wind surface. The research contributes to reducing workers' dust exposure with suggestions regarding ventilation optimization and working position selection.


Assuntos
Poluentes Ocupacionais do Ar , Minas de Carvão , Pneumopatias , Exposição Ocupacional , Humanos , Poeira/análise , Exposição Ocupacional/análise , Respiração , Poluentes Ocupacionais do Ar/análise , Exposição por Inalação/análise
19.
NanoImpact ; 33: 100493, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38219948

RESUMO

The use of modelling tools in the occupational hygiene community has increased in the last years to comply with the different existing regulations. However, limitations still exist mainly due to the difficulty to obtain certain key parameters such as the emission rate, which in the case of powder handling can be estimated using the dustiness index (DI). The goal of this work is to explore the applicability and usability of the DI for emission source characterization and occupational exposure prediction to particles during nanomaterial powder handling. Modelling of occupational exposure concentrations of 13 case scenarios was performed using a two-box model as well as three nano-specific tools (Stoffenmanager nano, NanoSafer and GUIDEnano). The improvement of modelling performance by using a derived handling energy factor (H) was explored. Results show the usability of the DI for emission source characterization and respirable mass exposure modelling of powder handling scenarios of nanomaterials. A clear improvement in modelling outcome was obtained when using derived quartile-3 H factors with, 1) Pearson correlations of 0.88 vs. 0.52 (not using H), and 2) ratio of modelled/measured concentrations ranging from 0.9 to 10 in 75% cases vs. 16.7% of the cases when not using H. Particle number concentrations were generally underpredicted. Using the most conservative H values, predictions with ratios modelled/measured concentrations of 0.4-3.6 were obtained.


Assuntos
Poluentes Ocupacionais do Ar , Nanoestruturas , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Pós , Exposição por Inalação/efeitos adversos , Monitoramento Ambiental/métodos , Nanoestruturas/efeitos adversos
20.
J Toxicol Sci ; 49(2): 49-53, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296528

RESUMO

Drosophila melanogaster (D. melanogaster) is a promising model biological system. It has a short life cycle and can provide a substantial number of specimens suitable for comprehensive genetic and molecular analyses in a short time. In this study, we investigated the acute inhalation toxicity of methylisothiazolinone (MIT) and chloromethylisothiazolinone (CMIT) in a D. melanogaster model. During exposure, environmental conditions, mass median aerodynamic and geometric standard diameters were measured. After inhalation exposure, the survival rate, climbing ability, and bang sensitivity were measured on days 1, 2, and 7. Notably, the survival rate of flies decreased in an exposure concentration-dependent manner. Climbing ability and bang sensitivity were also altered in the MIT/CMIT group, compared with the negative control group. Overall, these results provide a reliable D. melanogaster model system for inhalation toxicity study.


Assuntos
Drosophila melanogaster , Exposição por Inalação , Tiazóis , Animais , Drosophila melanogaster/genética , Modelos Animais , Exposição por Inalação/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...